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C CHAPTE 1

Introduction

The increase in the complexity of circuits fabricated on a singlo semiconductor chip has

made the design and testing of the circuits more difficult. For a number of years, circuits

with only a small number of transistors have been successfully analyzed using circuit

simulators such as SPICE2[1]. However, as the size of the circuit grows, the execution time

and memory requirements of these simulators become prohibitive. These problems have led

to the development of new simulators that are much faster and less memory intensive than

SPICE-type simulators such as MOTIS[2], MOTIS.C[3], and MOSTAP[4].

The new simulators developed for analyzing LSI and VLSI circuits often restrict the t)-pe

*of circuits that they can deal with. This knowledge is then utilized in a variety of ways to

quickly produce relatively accurate time domain waveforms for the circuits. For digital

circuits, this means that the process of design verification can be carried out on a level

between that of conventional circuit analysis and conventional logic simulation.

One of the most common techniques used in large scale circuit simulators is the

decomposition of the circuit into smaller subcrcuits. Each subcircuit is then analyzed

individually and the results are combined to give the desired data. In the general case, this is

known as "tearing" and corresponds to partitioning the network equations in particular

way[S]. If the subcircuits can be considered unidirectional (as is often the case for MOS

circuits), then further pins in speed can be achieved by analysis sequencing and latency

checking[6].

I A second approach can be considered as temporal decomposition of the circuit. In this

method, known as waveform relaxation, the solution for an entire time interval is

approximated using only a limited number of iterations at any point within the interval. This

. . . . . . . . .

. . . . . . . . . ..-- .-. * . .. -* . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . .. ~-..
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sweep of the whole interval can then be repeated until the solutions converge[7]. However,

if it can be justified that the first sweep is accurate enough, it is possible to discard the

following sweeps as well as the overhead associated with fully inplementing waveform

relaxation.

In timing simulators such as MOTIS-C, and SPLICE[8], a Gauss-Seidel-like technique is

used to decouple the network equations and a single sweep of the relaxation technique is

taken. This approach of not iterating to convergence means that the classical numerical

properties of an algorithm such as stability and convergence may not hold. Hence, new

studies of these properties become necessary to provide a basis for the use of an

algorithm[9].

Wei proved in Reference [10] that the standard Gauss-Seidel method is not convergent

when floating capacitors exist in the circuit. This helped motivate the development of a

modified Gauss-Seidel method which used a forward predictor to estimate the values of

unsolved variables in feedback loops. The predictor Gauss-Seidel method, shown to be zero

stable and convergent, was implemented in a program called PREMOS designed for

simulating NMOS circuits.

The work described in this thesis covers two basic areas. The first is a further study of the

numerical properties of the standard Gauss-Seidel and the predictor Gauss-Seidel methods.

A modification to the predictor method is made that gives it certain properties of both

methods. The second area is concerned with adding the capability of analyzing some CMOS

circuits to the PREMOS program.

Chapter 2 is a short description of some basic techniques used in numerical circuit

analysis. The properties of the Gauss-Seidel, predictor Gauss-Seidel, and modified predictor ,-

Gauss-Seidel are studied in Chapter 3, while Chapter 4 describes the CMOS circuits that have

been implemented in PREMOS. Finally Chapter 5 presents some conclusions and comments.

.
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CHAPTER 2

Circuit Simulation Techniques

L I Introduction

Conventional circuit simulators have proven to be very successful at providing accurate

current and voltage waveforms for small scale integrated circuits. However, in LSI and VLSI

design, these exact waveforms are often not needed as much as just the timing of the

transitions from one logic state to another. This led to the development of logic simulators[8]

that give results in terms of discrete levels. These logic simulators are much faster than

circuit simulators, but the loss of information is not always acceptable. In an attempt to
bridge this gap between the accuracy of circuit simulators and the speed of logic simulators,

timing simulators are being developed with the goal of providing waveforms close to those of

circuit simulators at speeds approaching those of logic simulators.

- Most timing simulators can be broken into two categories: those based on conventional

i- circuit analysis that employ various techniques to increase the speed, and those based on logic

simulation but employ various techniques to increase the accuracy. This report is concerned

with techniques more closely related to circuit analysis than to logic simulation. In this

respect, some of the existing circuit analysis techniques are reviewed in this chapter.

2.2 Conventional Circuit Anl1iul

A nonlinear dynamic circuit may in general be characterized by the equation,

IA lif(z,i,t) - 0, z(O) = x. (2.1)

where x represents a vector of voltages and/or currents and t represents time. In order to

obtain a numerical solution to x, Equation (2.1) is discretized at each time point t. by using

V.% •
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an integration formula such as the backward Euler, trapezoidal, or one of Gear's formulas.

This discretization transforms Equation (2.1) at each time point to an algebraic equation of

the form,

g =x. o (2.2)

Equation (2.2) is then usually solved by a modified Newton's method which repetitively

develops and solves linear equations of the form,

A x = b (2.3)

where A is a matrix and b is a vector. At every iteration A and b must be constructed by

linearizing the nonlinear equation at a new iteration point found during the previous

iteration. This process is repeated until the sequence of x converges to within some specified

tolerance. Once the solution for x. at a this point is found, the time is incremented and the

process is started again until the final time is reached. The basic algorithm can be given as

BEGIN
BEGIN

X = [Voltages, Currents]
TIME = Start Time
H = Initial Time step

END jinitialization}
TIME = TIME + H
WHILE (TIME < End Time) DO

BEGIN
Discretize the differential operator by
using an integration formula.
REPEAT

BEGIN k = 1
Evaluate linear models for circuit elements at
the operating points and form the circuit
matrix A and vector b.
Solve linear equations AX = b.

END

- "-.
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UNTIL (convergence achieved) I&c loopi
IF the local runcation error (LTE) is

smaller than the tolerance
THEN

BEGIN
Compute new time step H
TIME TIME + H

END
ELSE

BEGIN
TIME TIME -H
Compute revised time step H
TIME - TIME + H

END
END {time loop)

END

An increase in speed can be achieved by using sparse matrix techniques. However, these

techniques are not cost effective for VI simulations; as a result, new approaches have

* recently been proposed. The basis for several of these new methods will be described in the

next sections.

2.3 Large Scale Cllit Analyids

* A number of techniques based on relaxation methods have been proposed for solving

large systems of simultaneous equations. When these techniques are applied to circuits, a

priori knowledge of some of the properties of the circuits can be used to significantly

decrease the amount of computation required while at the same time maintaining accuracy.

However, it is important to first understand the basic methods.

2.4 Potnt Gausa.eobi Alaortthm

If the vector x in Equation (2.2) satisfies z a RO and xm is the value of the kth component

of the vector z at time t,, the value of x41I is found by solving the scalar equation,

g(X, ,.., zk, + 1, (2.4)

The complete vector zx' is found by incrementing k from I to m.

.- .- .-.....- ...... .............. .. .. -......-.......-...-..-.........-.. ,. -.. ,.-., "... ..-..-
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While this algorithm is fairly easy to implement, it may converge to the solution very .

slowly, provided that it converges at all. A natura extension of this algorithm leads to the

next algorithm.

2.S Point Gana-Seldel Alorithm

In this algorithm, information from the present iteration is used as well as information

from the previous iteration which usually decreases the number of iterations necessary for

convergence. When computing component x,2, the equation to be solved is

g(X I , X2+ 1, .1.. , Xk, Xi+ I,... Xm) (2.5)

This algorithm can result in a considerable increase in speed, especially when the circuit

variables are evaluated in the same order as the signal flow through the circuit.

2.6 Block Alorlthms

If each X. represents a node voltage, then from the network point of view, the two

methods above are equivalent to decomposing the network at every node. Another

possibility is to decompose the circuit into subcircuits composed of several nodes. When the

Gauss-Jacobi or Gauss-Seidel methods are applied in conjunction with decomposition into

subcircuits, Equations (2.4) and (2.5) can still be used, but with each z, representing a vector

instead of a scalar. In this case each vector xk can be solved using the conventional circuit

analysis previously described.

2.7 Waveform ReIzzatlon

For all of the algorithms described so far, the analysis is carried out at each time point for

the entire circuit before proceeding to the next time point. However, it is also possible to

solve for the waveform of each subcircuit over the entire time interval before proceeding to

the next subcircuit. After finding the waveforms for all of the subcircuitz, the process can be

repeated until the waveforms converge to a solution[7].



. . . . . . . . . . . . . . . . . . . . .. .

7

U One of the advantages of waveform relaxation is that different step sizes ca be used for

different subcircuits. However, a large amount of memory may be required to store the

waveforms and a large number of iterations may be needed for the solution to converge.
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CIHAPTE 3

Numerical Properties

3.1 Introduction

The techniques of the previous chapter can all require a considerable amount of time to

check to see if the computed solution is accurate enough. At each time point the algorithm

will have to check for convergence and then decide whether another iteration is needed.

Then after convergence for that time point is achieved, the local truncation error (LTE) must

be computed so that adecision can be made asto the accuracy of the point in question. If

the LTE is too large, the point may be thrown out and a new, smaller step must be taken

before repeating the process. Even if the point is accepted, the next step size is usually

recomputed before proceeding. The end result is that a lot of overhead computation not

directly related to the desired solution is performed.

This has led to the development of some simulators that used a fixed number of iterations

at each time point as well as a fixed step size. In fact some of these simulators such as

MOTIS, use only a single iteration. While this approach can obviously save a lot of

computation time on a per sweep basis, the fact that MOTIS only takes one sweep means that

the relaxation is not carried to convergence and classical numerical properties such as stability

and accuracy may not hold. Therefore, these properties must be evaluated to provide a

proper basis for the use of this method.

3.2 StabIty

In general, the analysis of a particular method is studied on a test problem simple enough

to be analyzed theoretically, yet coplex enough to provide information about a wide variety

.....................-.. . . . . ..-
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of applications. The most common test problem used is probably the single time invariant

linear differential equation:

z =ax, z(O) = Z, (3.1)

where z"x and "a" are scalars. Using a single equation has worked well when an integration

method like the backward Euler, trapezoidal, or one of Gear's formulas has been carried to

convergence at each step. However when a Gauss-Seidel type technique is used and the

process is not iterated to convergence at each step, the values of the variables behave

differently according to the order in which they are processed. Consequently, the test

problem must be generalized to become a system of equations,

= G x, x(O)-z, (3.2)

where x is a vector, C and G are matrices, and C is invertible. When an integration

* - algorithm is applied to Equation (3.2) it is possible to express the value of z at t..

recursively in the form,

M(h) (3.3)

where h is the step size and M(h) is known as the companion matrix. In terms of the initial

conditions, Equation (3.3) becomes

, [M(h)]" 1 is (3.4)

The numerical properties of one step integration algorithms are then defined in terms of the

properties of the companion matrix.

Definition 3.1[101

An integration algorithm is consistent if when applied to Equation (3.2), its companion

matrix can be expanded in a power series as a function of the step size h as

6
B i)
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M(h) I + hA + 0(h2 ) (3.5)

where A equal C- 1G.

Theorem 3.1

For a given step size h*, the sequence of vectors {xJ in Equation (3.4) is bounded if and

only if the spectrum (or set of eigenvalues) of M(h ° ) is contained in the unit ball B(0,1) and

no multiple zero of the minimal polynomial has modulus equal to one[I1]. C(Te requirement

that no multiple zero of the minimal polynomial has modulus equal to one is the same as

saying that all the eigenvalues with a magnitude of one must be distinct.)

The above theorem leads to the following definition of stability for an integration

algorithm:

Definition 3.2

An integration algorithm is zero stable if and only if thereeists a & > 0 such that for all

h in the interval (0, 8), the spectrum of M(h) is contained in the unit ball B(O,1), and no

multiple zero of the minimal polynomial has modulus equal to one.

Note that if a circuit being evaluated is stable, then the solution is bounded, and the

integration algorithm must also be stable if an accurate solution is desired.

Definition 3.3

Let x(t) be the exact solution of the test problem. An integration algorithm is convergent

if the sequence of the computed solution converges uniformly to x(t) as the step size tends to

zero.

.............
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P Theorem 3.2

If an integration algorithm is consistent and zero stable, then it is convergent.

The proof of Theorem 3.2 can be found in numerical books such as Reference [12].

It has been proven in Referenm (10] that the Gauss-Seidel method is convergent if there

are no floating capacitors (i.e., capacitors connected between two nonground nodes) present

in the circuit. However, it has also been proven in Reference [10] that the Gauss-Seidel

method is not consistent, and therefore may not be convergent, whenever floating capacitors

are present. This led Wei to introduce a modified Gauss-Seidel method which is convergent

even when floating capacitors are present in the circuit. However, from the definition,

convergence is dependent upon the step size tending to zero. In practice it is desirable to

* make the step size as large as possible for the desired degree of accuracy. Therefore, the

range of h for which a method is stable is important, which is a different issue than

convergence, and thus has to be studied separately. Another issue of importance is that the

n presence of complex conjugates in the spectrum of M(h) may indicate an oscillatory

component in the computed solution that may not be present in the exact solution. These

issues will be examined now by using a simple test circuit shown in Figure 3.1 to generate a

system of equations and the corresponding companion matrices.

3.33 lhe Companlon Matrkcs

, Applying nodal analysis to the circuit of Figure 3.1, we obtain the matrix equation:

'v:11 + ["S6+"3 "-"1 ["l-o,.+

r Letting

- . . . . . . . . . . . . . . .
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C, -e+ a (3.7)

C M e + a3(3.8)

CS M 0(3.9)

LII I 
1 I + 12 (3.10)

512 , Ip - (3.11)

£21 S o - 1 (3.12)

1-: - 12 + s (3.13)

and

*G ~ [i 1121 (3.15)
1S21I £22

Vii.[i (3.16)

* ~~Equation (3.6) can be writte intefr f Equation (3.2) as:

V- -- GV (3.11a)

=AV (3.17b)
If the backward Euler integration formula

I- (zl- x..--) (3.18)

is applied to Equation (3.6) we have

SC2 
V
2
'I 

hV26
-  121 £22 0l.,[~i~ .-:: ,,.-,: + [£11,=512] ,L.v 1 o <-,,0

L
o

4
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C3' -, l",.l., h,,,, ,,,,1 Iv,. [%,_C3 ] @ Iv,.-03.9b[ LC Lj C 2g1 h 2,,J +V,. .C V,

. IiI. I ] 0-h (3.19b)

LC3 + h82 C' [+i hSJ [C i - 0

At this point the derivation for the companion matrices of a full matrix solution, the

standard Gauss-Seidel and the predictr Gauss-Seidel methods differ. For a full matrix

solution this becomes

[v, 11 1hs11  -C,+hg,] [v (.20) "-
[vJ. [t-c,+hg,, =+hs2J Cv ,

[knkjj k (3.20b)

where

k-l c1 (c+hg,) - c,(ci-hg12) (3.21)

|k -c,(c€+hSg) + c(C-hgu) (3.22)

k.,- c,(c,-bg,) - c,(c.+h,,) (3.23)

ku M -c,(c-hg1 ) + c(c,+hg11 ) (3.24)

- (c%+hg1h)(c€+hg,) - (-c+hg1,)(-cr+hg,) (3.25)

3.3.1 S andard Gauss-Seidel

When applying the standard Gauss-Seidel technique, Equation (3.19) becomes

-hj [0 -cI+hg,1 [1
c+hg,1  [v, [ 0v-1  (3.26a)1 0"_-L + h S22 €=+ V; I • C Ci [Vl.-, - .- =

L- [ h2 [;V= (3.26b)

S.'T"
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i Solving for V,, and V2.,,

[=2 I As 1 im 22  , v , (3.27)

where

U111 - c1(c2+hg 22 ) (3.28)

m,2 - -hg 12(c2+hg,2) (3.29)

m2t- cl(c,-hg21 )-c3 (c,+hg, 2) (3.30)

M - -c,(c,-hgi 1 ) + c,(c,+hg,,) (3.31)

an - -c3(c 3 -hg 1 ) + c2(c,+hg1 t) (3.32)

The spectrum of Mas(h) can then be found as the roots of the equation,

X2 ((mta + m=)/A.)k + ((mt 2U2l)/') = 0 (3.33)

3.3.2 Predictor Gauss-Seidel

In Reference [10] Wei introduced a modified Gauss-Seidel method which used a forward

predictor for unsolved node voltages. The voltages were predicted according to the formula,

) Ivy-' - V:-2
-VPM ) - Vo't + h, h, (3.34)

For a more general formula which generates a family of equations and includes the

is " original predictor method as a special case, the following predictor equation is proposed
h. -* " I - }o

V( V- +, . (3.35)

T+ o-1h h,-

j" °
I-

"- -S . ''' "".J.,. ..,.; ''''''''""''"," ; .-- a-'-'-'-'.",".: . , ,,€ ,' , , , .• ", __ _ , "-''' ' - ' ' .: . ,' '
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This family of equations obviously reduces to Equation (3.34) when gamma equals zero,

but approaches the standard Gauss-*Seidel method as gamma goes to infinity. Letting

applying Equation (3.35) to Equation (3.19), and assuming that h.= h - h, we obtain

c ][] a [0 -hgs2 + O(c-hgsu)] [vi]l (3.37)

-c,+hg4 [%-og2.c -hS1,)] C~ 2

+- " .. 
h n

or

cjhjj0 0 ir,1 1  l -hgz+e(c3 -bg,) -e(c 2 -hg,2) 1
-02, hg21 02-ihgO v 0 CC2 0 v2 . 1  (3.38)

[2 
.0

[0 0 1 0~z..J~ 1 0 jjV:.a. 2j

LO 1 OJ

The r edic t o nion ma.r4) when is fouad as

.......... 0 c.-............ ..... ) --

-c-hgg c2+hv 0 _3 C (3.39)
0 hll 0 1I  0 1g 0

rslo 1 0
where=-'.
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"" "P =c/ (3.40)

Q (-hbg + (c3-hg2))/P 1  (3.41)

R = (- O(c-hg,2))/P 1  (3.42)

S - c(c 3-b 21)/(P,1 ) - c302 (3.43)

T - (c3-hg2)(-h 1 1 + S(c.-hg1 2))/(P1P 2) + cq' 2  (3.44)

-- U = (-e(c3-hg 1,)(c,-hg 12))/(P1 ,P) (3.45)

L 1 - (;+hg1 ) (3.46)

02 - (;+hg22 ) (3.47)

- -The spectrum of Mos(h) is then found as the roots to the cubic equation,

-(p+T1.\ + (PT-SO-U)X + (PU-SR) -0 (3.48)
Given a cubic equation, an explicit solution in terms of the coefficients is found as

follows[13]. A cubic equation of the form

y 3+ py+ qy + r 0

may be reduced to the form

13 + ax + b =0

by substituting (z - p/3) for y. When this is done, then

a (3q- V3

and

b = (2p3 - 9pq + 27r)/27

For solution let

. .

* . . . . . . . . . . . t . . . .

- " ". "' . ' " -" - -"' '-". . ' " - 2 ". "" ". ."' - "-. ." . - ,"-" . -" -. ."" " . " "-- ."-" " .'"" . "" ". ."" " . "' ', ." "" -2.
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A= /(-b2) + V(b/4 + a027)

and

B = b2) - 'V(b2/4 + a'/37)

Finally, the values of will be given by

z = A+B, -(A+B)/2 + ((A-B)/2) V-3, - (A+B)/2 - ((A-B)t2) V'..

When the above formulas are applied to Equation (3.48) the expressions obtained are

complicated enough that the variou numerical properties of the method are probably

masked. Instead, the numerical properties of the methods when applied to the test circuit of

Figure 3.1 with different parameter values are investigated.

3.4 Stabf~t, and Aeeuragc Studko'

In this section several studies of the circuit given in Figure 3.1 will be presented. The

component values in each case are selected so that the circuit is stable with strictly real

eigenvalues and then the spectrum of each companion matrix as a function of the step size is

plotted. Each plot will have a solid ellipse representing the upper half of the unit circle and a

series of discrete points that give the spectrum at specific values of h. The values of the

components will not be realistic for practical circuits, but by proper scaling these results

should be applicable to a wide variety of cases. It can be seen from Equation (3.19) that if

each capacitance and the step size h are multiplied by the same factor a1 , then the results

should remain unchinged. Similarly, if each conductance is multiplied by a factor a,, and the

. . . .

. . .. . . . . . . . . . . . .
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. step size is divided by a 2 then onc again the results should be the same. In summary, if the

* "system

C i + G =0 (3.49)
s

results in the companion matrix M(h), then the system

aC i+ a2 0 (3.50)

wil give the companion matrix M( a - h).

The accuracy studies will be conducted by exciting node 1 of the circuit with a current

source of 1.0 amp for all time t > 0.0 (with 0.0 amps as the input prior to t = 0.0). This

step input will allow the response of the methods to a rapidly changing input to be compared

by observing the voltage computed for node 2.

3.4.1 StudyA

By let ing,4 = I = - 1 (farad) and g1=g= 3 =g,-g,=l (mbo) this study provides a

* reference to which other studies can easily be compared. For this circuit with eigenvalues

-2/3 and -2, Figure 3.2 shows that both the standard and predictor Gauss-Seidel methods are

stable for 0 < h < c. The standard method, shown in Figure 3.2a, is strictly real for all h.

The spectrum of the pure predictor method, (i.e., gamma - 0.0 in Equation 3.36) shown in 71

Figure 3.2b has complex components for h greater than one-third and reaching a maximum at

about h = 1. Finally, the modified predictor spectrum is shown in Figure 3.2c with

gamma = 1.0. As expected, this spectrum appears to be a weighted average of the previous

two.

Figures 3.3 and 3.4 are plots of the voltage at node 2 for h =1.0 and h =0.1

respectively. Comparing the standard and predictor Gauss-Seidel (gamma = 0.0) methods

with the solution generated by a full matrix approach, we see in this case that all three

[33
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methods have comparable accuracy for a given step size. Comparing the solutions generated

by the two different step sizes, the larger step size does not allow the voltage to change as

quickly as the smaller step size. Sharp corners and the agging response in Figure 3.3
U

indicate that a step size (h - 1.0) of the same order of magnitude as the eigenvalues (.2/3

and -2) may result in an inaccurate solution when there is a rapidly changing input.

3.4.2 Study 0

In this example, d is reduced by a factor of ten. This has the effect of decreasing the

stiffness of the circuit (i.e., ratio of the eigenvalues) and allows the spectrum of the standard
r -

method, Figure 3.5a and that of the predictor method (gamma - 0.0), Figure 3.Sb, to be

strictly real and within the unit circle. This indicates neither method should have any

problems with instability or unwanted oscillations for any value of h.

3.4.3 StuyC

By increasing the feedback capacitance 3 to 100, a very stiff system results. Four

Udifferent spectra are plotted in Figure 3.6. While both methods (Figures 3.6a and 3.6b) still

remain stable for all h, the pure predictor method (gamma - 0.0) has a complex spectrum

for h > 2.8. Increasing gamma to 1.5 completejy removes the complex components of the

predictor method (Figure 3.6c). The magnitude of the complex component reaches a

maximum at h - 25.0 and in this case it is seen in Figure 3.7 that the pure predictor method

(i.e., gamma - 0.0) has an oscillatory component in the solution that is not present using the

other methods. As expected, increasing gamma to 1.5 will remove these oscillations.

However, it was found experimentally that a gamma as small as 0.05 was enough to remove

the oscillations and allowed a more accurate solution (Figure 3.8). The root locus plot for

gamma - 0.05 (Figure 3.6d) shows that in this case the maximum magnitude of the complex

part of the roots (now shifted to h = 12.5) was reduced by approximately 40 percent, from

0.5 to 0.3.

. . . . . ..... . .
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Since the eigenvalues of the test circuit are strictly real (-0.1 and -2.0), the exact solution

will not have any oscillatory components. Therefore, any oscillations in a computed solution

are due to the numerical technique and not the physical circuit. By carefully choosing the

step size, unwanted numerically generated oscillations can be observed. However, it should

be noted that the step size necessary was much larger than either of the eigenvalues, and

study A has already demonstrated that a step size smaller than the eigenvalues can be

desirable for accuracy when an input to the circuit changes rapidly. This study also clearly

shows that the existence of complex roots in the spectrum of the companion matrix is not

enough to indicate oscillations are present in the computed solution. Since, in general, a step

size larger than any of the eigenvalues may not generate an accurate solution in response to a

rapidly changing input, this indicates that these unwanted oscillations are probably not a

major factor in generating accurate solutions.

3.4.4 Study D

In this case, with a very large feedback term represented by gp = 100, we find that both

the standard Gauss-Seidel (Figure 3.9a) and the predictor Gaus-Seidel (gamma = 0.0)

(Figure 3.9b) methods become unstable for h within a finite interval. For this very stiff

system with eigenvalues of -0.037 and -35.629, the solution would normally be obtained by

starting with a very small step size to catch initial transient& and then increasing the step size

so that the rest of the interval would not require too much computation time. However, the

standard method is unstable for 1 < h < 16 while the pure predictor method is unstable for

1 < h < 81. If an automatic time step control scheme increased the step size too much (i.e.,

h > 1.0), then neither method would be satisfactory.

For completeness, the spectrum of the predictor method with gamma = 2.0 is included as

Figure 3.9c to demonstrate that the modified predictor method has properties in between

those of the standard and the pure predictor methods.

L - ' - - .-. " ---- . :-. "--: - .. . . . . .- "- ." - -. -.. . ..-. ."."'" " " ; . L. ;. -.. .---
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3.4.5 Study

This case demonstrates properties of the methods when a very large transonductance is

present. A simple exchange of the values for S and g yields a circuit with exactly the same

eigenvalues as in study D. While the predictor method with gamma = 0.0 (Figure 3.10a)

still has a finite interval where it is unstable, the standard Gauss-Seidel method

(Figure 3.10b) is stable for all positive h. Comparing the C and 0 matrices for this test and

for the previous test, we find that the only real difference is that the one element has moved

to form a lower triangular instead of an upper triangular G matrix. To make the modified

predictor method stable for all h, gamma is set to 5.0, as in Figure 3.1-c.

An accuracy test with h = 81 (Figure 3.11) shows that the pure predictor method can

oscillate around the full matrix solution when the step size is much larger than any of the

eigenvalues. In order to use the predictor method with step size h - 1.0, gamma must be

nonzero. If gamma = 5.0 as in the spectrum plot of Figure 3.10c, the aceu-acy plot of

Figure 3.12 results. In this case (h = 1.0), neither the standard or the predictor Gauss-Seidel

(gamma = 5.0) methods are very close to the full matrix approach. If the step size is

reduced to 0.1, as in Figure 3.13, the predictor method comes much closer to the full matrix

solution, while the standard Gauss-Seidel method continues to differ greatly. Ii, in addition

to reducing the step size to 0.1, gamma is reduced from 5.0 to 0.0, then the pure predictor

method is found to follow the full matrix solution almost exactly (Figure 3.14).

3.4.6 Studies F and G

Both of these cases lack the feedback capacitor, t, and have the same conductance .-

matrix, G. The only difference is an interchange of the input and output capacitances,

C and t2. This results in both circuits having identical eigenvalues and the major difference

being a scale factor for each row of the A matrix. A comparison of the spectrum plots for

study F (Figure 3.15) and for study G (Figure 3.16) shows that the results are identical when

-.. . .. .. . . ... ... . . ....... . ..



r r r -

- - - crC.'> -
F

'-4 39

'I

'4

NS@ *. .@6Shis Sass
- -

- - S

III ill -~-%'~I% N

Iii
U

4'

N
'jt~

-o
I

bU
U

L
~J.

S..

@00 I

S3
- S S

4 - . 4.-.' *%~~%44%4V~S

4 *4~F~ ~

* *. ~4~4~44~* . **-~

4.- * .4 -4. ,~...4* 4 *4*-*4A%*4.*'*. . 4 .4

- - -. 44 44 4 '4 -.
4 4 4



40

.. 4-

.20 W I a#11
goo_ __ _ _ __ _ _ __-

Go!



-JX - . . . . . . . - . .1' -""~ ,,,.'.Q,, , -' . -w ',h . .- : .yv'

•41

eel

I a

II I I II I 11111 i I I °

-,,! _.'

coo
In 4t

11""

I I -,~

~1

o" --..



V.2

44

se 44 i 6; di 6a

KM b

r4

11-ta

I... Ii
NOA)- *S"IO



43j

uml *fl EU::

f--m --

oil

cy z Iw Z:

- 4-v -r T I f I I I I I

I KY C'
T

(am 21=10A



* -- qv - tv U0 uu b
WcJ UW

Ift f.

www

- ---- -V

S.. BS !55L

ISWIOA



45*o

__, II ?.- -2 ;f.'

ii i i 227 ..-

III II 3335

* Sc

@Ic

.°- - ...

TT

* 
:ROA 

.

-- 
0

-. S .. **

• .'-' ." - ,. . .' " .'.'% .. . , .. - -'.' - . .... '., , , , ..". * a -'-.- "" ","-- " ., 'e , . , ' , .- .., - - . . .'



46

0 x.

| |IIII I I 111

I a3

.x

r4-.

15 X

"OIII .fUI.

°--

.-.

.. Cl



47

-Ila liils

II IS II;t

r iii

1%o1

C. 0



L"

48

-- 9 
V! 

s
I I I I I I uIl E

_ N ? 
° ' -"

0~

1 
i"~

III b t t
7

- ,,U

0 

,

In, I " - ' I I I f



5 49

t -o

of III lo l

LL

~- C;

ego

40 0,4- ''I ljiu eago1jI~

C.C 0 f



so

I||V "~ii "||iIII: 1111H

II II I I ##I

- a , 0V -@on s a

--- o

1I I

to .
dii



51

II

* iii II 1111
3!A 0

age a!

IIIC II 111



52

a specific method is compared to the same method. One interesting result of these studies is

that even though both the capacitance and conductance matrices are diagonally dominant

(i.e., for each row, the sum of the off.diagonal elements is less than the absolute value of the

diagonal element [14]), the predictor Gauss-Seidel method is unstable for all h > 64.0, while

the standard Gauss-Seidel method is stable for all h. An accuracy plot (Figure 3.17) shows

that for h comparable to the eigenvalues, both the standard and predictor Gauss-Seidel

methods have accuracy very close to that of a full matrix solution.

The studies conducted so far have been chosen to illustrate behavior with respect to

specific component values in the test circuit. The next three studies are included to allow

further comparison based upon the structure of the capacitance and conductance matrices.

3.4.7 Studies H. J. and X

Study H demonstrates behavior when all the elements in both the capacitance and

conductance matrices are nonzero. As in study F, both the C and G matrices are diagonally

dominant. A wider range of h for which the spectra are complex is observed in

Figures 3.18a and 3.18b. The predictor method still is unstable for large enough h, while the

standard method is stable for all h.

Study I has the same C and G matrices as study H, except that the upper hand element of

the conductance matrix has been set to zero. This creates a lower triangular, diagonally

dominant G matrix. In this example, Figures 3.19a and 3.19b show that both methods are

stable for all h.

Study K again has the same C and G matrices as study H, except that this time the lower

lefthand element has been set to zero. This yields an upper triangular conductance matrix.

As in study I, both the standard and predictor Gauss-Seidel (gamma - 0.0) methods are

stable for all h. (Figure 3.20.)
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3.S Diwsston

The results of each of these ten studies are summarized in Figure 3.21. Included for each

study are the capacitance (C), conductance (G), and A = (-C-G) matrices, along with the -

eigenvalues of the "test circuit. In the following discussion, the term "standard method"

means "standard Gauss-Seidel method" and the term "predictor method" means "predictor

Gauss-Seidel method."

A comparison of studies A, B, and C shows that the differences result from the difference

in the capacitance matrix. By referring to Equation (3.6), it can be seen that the C matrix

will always be symmetric (i.e., C - Cr)(14] and will be diagonally dominant as long as

t and C are both nonzero. This indicates that if the G matrix is strictly diagonal, both the

standard and predictor methods will be stable for all h. If the feedback capacitance, 4, is

very large in comparison to the other two capacitance then some undesirable oscillation can

occur, but stability is maintained.

The next two studies, D and E, are the only two studies with conductance matrices that

are not diagonally dominant. They are also the only two studies with a finite range of h

where the predictor method is unstable. In every other study, if the predictor method is .

stable for some h., then the method is stable for all h < ha. This stability property is also -

true for the standard method in study D. (The standard method is stable for all h in all

studies except D.) Since the interval of h for which the methods are unstable includes a

region between the value of the eigenvalues, it is likely that a fast and accurate solution

would be difficult to a&ieve for study D with either method. (This is because a step size too

large would either be in the unstable region or could cause large inaccuracies. But a small

step size slows the speed of analysis.)
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Study E, where the G matrix is lower diagonal, results in the standard method being

stable for all h, whil the predictor method is still unstable for a finite range of h that lies

between the value of the cigenvalues. This is an example where the standard method seems

more desirable because of the stability properties. However, the accuracy plots show that for

h where the predictor method is stable, the predictor method can also be much more

accurate. When possible, Figure 3.14 indicates that the most desirable technique would be to

use the predictor method where it is stable with gamma equal to zero. If this step size is too

small for the desired speed of analysis, then the smallest gamma possible that insures stability

would be needed for greatest accuracy.

The last five studies all have a similar diagonally dominant conductance matrix. The first

two of these five, studies F and G, have a strictly diagonal capacitance matrir which result in

each row of the A matrix being scaled, with no effect on the stability. The last two, studies I

and K, have one element in the conductance matrix zeroed so that the conductance matrix

becomes triangular. This seems to increase the range of h for which the methods are stable.

However, making an off-diagonal element zero should allow the matrices to behave more

like diagonal matrices, and the first three studies, A, B, and C, have already demonstrated

the behavior of a strictly diagonally G matrix.

In summary, both methods had either stability or accuracy problems if the conductance

'r ttrix was not diagonally dominant. In these studies, if the conductance matrix is diagonally

dominant, then the standard Gauss-Seidel method is stable for all h, but a dominant

conductance matrix is not sufficient to ensure that the predictor Gauss-Seidel method is stable

for all h. In each case, however, if the method is stable for some h,, then it is also stable for

I-..-....... ...... .. . . . . . . . . . . . . . ...... 
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* all h < h,. Therefore, a proper choice of gamnma should be possible to make the predictor

- method as stable as the standard method but with hnceased accuracy for the same step size.

1
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CHAPME 4

PREMOS

4.1 Introduction

PREMOS (PREdiction Based simulator for MOS circuits) is an experimental circuit

analysis program that is an attempt to bridge the gap between conventional circuit simulation

and conventional logic simulation. PREMOS was developed by Wei at the University of

Illinois and it evolved directly from MOTIS-C; but a number of basic changes were

implemented in an attempt to increase the speed and accuracy. In addition to the predictor

method described in the previous chapter, other changes include new data structures so that

new analysis algorithms, such as analysis sequencing, could be implemented.

The subcircuit models built into the program are a major factor why PREMOS is faster

than conventional circuit simulators such as SPICE2. However, if a circuit cannot be

constructed from the built-in models, then PREMOS cannot be used for simulations. Thus, a

user-specified subcircuit description, as well as an automatic partitioning algorithm, are

needed to make the program more useful. Originally PREMOS was restricted to NMOS

circuit simulations, but as part of the work reported in this thesis, several new subcircuits

have been added to allow a limited CMOS circuit capability. These new subcircuits as well as

how to use PREMOS are described in the following sections.

4.2 Input Circuit Deucr/atio

The program PREMOS supplies the user with a variety of subcircuit models, henceforth

referred to as primitive3, that consist of a specific interconnection of transistors. The

parameters (such as width to length ratio of the transistors and node capacitances) for each

type of subcircuit are specified using the "model" card. The model card is also used to give a
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name to each type of subcircuit, so that each primitive can be used repeatedly with a different

set of parameters each time. The general format of the model card is

MODEL (modname) (primitive)(parameters)

After each neessary type of subcircuit has been described and named, the interconnection

of the subcircuits is specified. In this section of the input the user gives each subcircuit a l
distinct name, specifies to which nodes the subcircuit is connected, and gives the model name

specifying the proper type of subcircuit. The general format of the interconnect card is

(name) (nodes) (modname)

with one exception. This exception is when a subcircuit uses the SOURC primitive.

4.2.1 The SOURC Primitive

The SOURC primitive is unique because it is used to describe voltage sources that switch

between two levels, such as clock pulses, rather than an interconnection of transistors. The

pulses are specified by a series of "I'" and "O's" following the model name on the

interconnect card to indicate when the source is at the high or low voltage level, respectively.

Linear interpolation is used to determine the voltage level during the rise and fall times when

switching between levels. An example of this switching behavior is given in Figure 4.1. As

Ion& as t.,, + tdw is the same as t,,,, + t., (specified with the MODEL card), then the user =

should have no trouble as two consecutive digits will always have the same total duration.

However, if the above condition does not hold, then care should be taken.

4.2.2 The CMOS Cells

Four new CMOS primitives have been added to PREMOS. These are an inverter

(Figure 4.2), a 2-input NAND (Figure 4.3), a 2-input NOR (Figure 4.4), and a variable

number of transfer gates in series (Figure 4.5). The notation that follows is
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win -width-to-length ratio of the n.'channel transistors

wip -width..to-length ratio of the p-channel transistors

- cg - gte (input) node capacitance

ci -internal node capacitanc

ci- load (output) node capacitance

and, additionally, for the transfer gates

CS sourc (input) node capacitance -

cvi gate of n- canel transistor capacitance

cgp l ate of p-channel transistor capacitance

c? - intertransfer gate t=mnistor capacitance

nt number of tranfer gates

- The parameters for the primitives are then specified in the folilowing order:

CNC4V win wlp cg cl
OCNOR win wip cg ci ci
C!MNAN win wlp cg ci ci
QC1TR wln wip e cvi cgp ctdcnt

To specify circuit connections, the user must assivi node numbers for each of these cells

in the order:

CN4V ng nI
CMNOR nl n2 ni n
CMNAN n1 n2 ninl

t CUMTF msn1lnpl ailnn2 np2 .. .al

The first-time user should note that even internal node numbers for each cell must be

swOit'ied even though internal nodes should never be connected to another cell.
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To allow greater flexibility, the CMOS transfer gates have not been specifically linked to

other type of logic as was done by Wei for NMOS transfer gates. However, large

inaccuracies may result if the signal flow within the circuit is from the output node to the

source node of a series of transfer gates instead of from the source to the output. Therefore,

the user is encouraged to connect the output node of transfer gates only to the input node of

other cells. It should also be noted that proper operation of CMOS transfer gates requires

complementary control signals to the n-channel and p-channel transistors. Therefore, the use

may need to add an inverter so that both polarities of the signal are available.

4.3 Control Commands

The control commands are input into PREMOS in the same file as the input data

description. The nine basic commands are described in Appendix 3 of Reference [10]. The

only changes have to do with the additional CMOS subcircuits and the modification to the

predictor Gauss-Seidel method.

The OPT card is used to specify the number iterations allowed for each primitive for any

single point in time. The number of dc iterations for the CMOS primitives can either be

concatenated to the string given in Reference [10], or if a zero is input as the first number,

then the CMOS dc iterations can be inputted directly. That is,

OFT itnan itnor ittrs itpul itich itao itoa itaos itcin itcor itcan itctrs

or,

OPT 0 itcin itcor itcan itctrs

where itcin, itcor, itcan, and itctrs are the number of preset dc iteration for a CMOS inverter,

a CMOS NOR gate, a CMOS NAND gate, and a CMOS transfer gate respectively and all .

other terms are as defined by Wei. The default number of iteration for any primitive not

specified is one.

K . . .. . . . . ..
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The CONTL card has simply added one more parameter, gamma, so that the modified

predictor method can be used. If the predictor scheme is chosen then gmma may be

specified. The default value of gamma is zero. The form of the CONL card is now:

CONTL laten Itstp lpred gamma

with laten, Itstp, and Ipred as defined by Wei.

4.4 Transostr Dgeer ufon

In addition to the input circuit description and control file already described, PREMOS

4 requires a second data file describing the transistor characteristics. The modeling equations

used are [15] and [16]:

1Io - K?.* 1(.,(Vo,-V) s V,) - V (4.1)

.. for operation in the linear region and

Ios l ,, (VOS VT)" 42
ID -l(4.22 1+i(V 05-VT) V)

for operation in the saturation region with

VT lVTO + AVT (4.3)

and

XP intrinsic tansconductance

X channel length modulation parameter

-q mobility reduction parameter

VT- threshold voltage at dc bias

AVT - threshold voltage change due to substrate bias voltage change
4.



74

These parameters for each type of transistor must be in a file named "datai.dat." Each

transistor has a set of 24 parameters, the first four of which are KP, X, -q, and VTO. The next

20 are AVT as represented in tabular form as a function of the source to substrate voltage.

The first set of 24 is used to describe all of the NMOS enhancement mode transistors. The

second set of 24 is used to describe the NMOS depletion mode transistors and should have a

negative V... The third group of 24 is for the PMOS enhancement mode transistor and

should also have a negative VTo. Finally, the last group of 24 is reserved for PMOS

depletion mode transistors, even though no primitives have been implemented yet that use

this type of transistor.

4.5 Output Processuin

In addition to being able to generate plots on standard printer, PREMOS is also capable

of generating output suitable for input to a graphics plotter. Currently, the SEND command

will generate an output data file named "plfile.dat" which can then be used by a program

named "grar for making graphs on Tektronics 4010 series terminals. All the user has to do

is execute graf, which will read in the file plfile.dat and then prompt the user for all

necessary additional input.

4.6 [teractive Session Commands

At this point it is appropriate to demonstrate the use of PREMOS to analyze a particular

circuit. The circuit chosen for this is a ring oscillator constructed from C4OS gates as shown

in Figure 4.6. A file named "cring.dat" describing the circuit and giving the control

commands for this circuit is given in Figure 4.7. The transistor data file (always named

"datai.dat") is given if Figure 4.8. At the time of this writing, PREMOS has been developed

in conjunction with the BSD 4.1 version of the LNWXm operating system. Given that the

executable code for PREMOS is contained in the file named "prec.ext" and letting bold face
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3 stage coos rng oscillator
model Invw m.Lv(2 2 20f 20f)
model nazld innaa(2 I. 20f 3.Sf 20f)
mael clx scurc(5 0 Lon Sn 3.on 5n)
X1 3. 4 5 2 nAnG
x2 2 3 Inv'
x3 3 4 Inv
CI 1. 0 ell 0 3. 0 0 3. 0
apt 0 3 3 3 3
dc
Conti I. I. I
time 40n Inu
plot~ 1 2 3
send 1. 2 3
V.
end

Ftgure 4.7 Inpu duit mdat
file for CM0s asdlmamr.

2.0004-CS 1..000d-03 3.000d-C3 1..000d-00 0.000d-00 0.000d-00
0.0004.00 0.000d-00 0.000d-00 0.000d-00 0.0004-00 0.000d-00
0.0004.00 0.0004.00 0.0004.00 0.0004-00 0.0004.00 C000400
0.0004-00 0.000d.00 0.0004-00 0.0004.00 0.0004.00 0.0004.00
2.0004-05 1.000d-03 1.000d-03 -2.000400 0.0004.00 0.0004-00
0.0004-00 0.0004.00 0.0004.00 0.0004.00 0.0004-00 0.0004-00
0.000d-00 0.OO0d*00 0.000d-00 0.008-C C .2004-00 C.000d-OC
0.0004.00 0.0OOd.00 0.0004-00 0.0004-OC C.0004-C0 .-00C8-CC
2.0004-CS 1.0004-03 1.000d-03 -1.004-00 0.0004-00 0.0004C
0.0004.00 0.0004.00 0.0004-00 0.0004.00 C.0004-00 0004-CC
0.0004.00 0.0004.00 0.0004-00 0.0004-00 0.0004.00 0.0004-00
0.0004.00 0.0004.600 0.0004-00 0.0004-00 0.0004-CC 0.0004-C
2.000d-05 1.000~d-03 1.0004-C3 2.0004-CO 0.0004-00 C.0004-00
0.000d-00 0.0004.00 0.0004-00 0.000d-00 0.000d-00 0.0004-C
C.0004-00 0.0004-00 0.0~00CC 0.000COOd0-CC 0.0004-CC
0.0004-00 0.0004-00 0.0004-00 0.0004.00 0004-00 0.00040O
0.0004-00 0.0004-00 0.0004-00 0.0004-00 0.0004-CC 0.0004-C

Fig=r 4.8 Trmwistor procms paulmetsr
fage fat ring oscilator.
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denote what the user needs to type in response to various prompts, then a typical analysis of

a circuit would proceed as follows:

%i prec.ext <return>
circuit file name? cring.dat <return>
listing file name? cring.out <return>

At this time, the output data is in the fie -cring.out* and can be listed on a terminal or

printed on paper. PREMOS has also created a new file with the name "plfile.dat" for use

with the graphing routines, If "plfile.dat* already existed, it is overwritten with the new

output.

The plotting routines have been written using PLOT10 software for use with Tektronics

4010 series terminals. Assuming the user is now logged on to an appropriate graphics

termninal, the session could proceed as follows:

% graf
want hard copy? yes- 1, no 0
I <return>
1st symbol type-? 0(no),1(0),2(x),5(),8(+),<ll
1st line type-? 1-4(dash),0(sohid),.1(no),<l1
sequential line type: 0 12 3 4 23 34, <11
0 0 <return>
2nd symnbol type-? 2nd line type=?
0 1<return>

After the user has selected the desired style of line for each of up to seven output voltages

(previously selected with the SEND command in the input file), the waveforms will be

plotted. When the user is ready to continue with other commands, the "return' key must be

pressed to obtain another prompt from the computer. As can be seen above, a number of

possible plotting styles are given to the user in the prompt for the first waveform. For other
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possibilities, refer to the PLOT10 manuals. The graphics output resulting from the input file

"cring.dat" is shown in Figure 4.9. Other sample circuits are include in the appendix.

4.7 Dismneston

PREMOS is a fairly easy program to use provided the circuit can be described with the

primitves provided. Furthermore, after learning how to add one primitive, it is fairly easy

to add new primitives as the need arises. However, in the present implementation adding

new primitives increases the size of the program, while for speed it is desirable to keep the

program small. Since the primitives are used mainly in identifying the topology of a circuit,

it may be desirable to change the structure of the prosram so that the topology of the circuit

is stored in an intermediate data file. While allowing a much larger selection of primitives to

be maintained, this would also have the benefit that different control commands inputs could

be used without the overhead of always analyzing the basic structur of the circuit. This

could be valuable if the predictor method was ever found to be unstable for a particular

circuit.

.................................- "
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Conclusions

Performing circuit level simulation at logic level speeds is an active area of research. The

methods used in the program PREMOS to ncrease the speed of analysis include analysis

sequencing, latency checking, and circuit partitioning. While these techniques do decrease

the amount of computer time required, some important restrictims must be placed on the

type of circuits allowed. As implemented in PREMOS, one major requirement is that a

circuit must be composed of available unidirectional subcircuits. The unidirectional

requirement means that feedback within a circuit requires special numerical algorithms. This

work has attempted to show that the predictor Gauss-Seidel method is a viable approach.

While the predictor Gauss-Seidel method is not in general stable for all positive time step

sizes, it has been shown to be stable for some interval of step sizes in each of seven studies.

Perhaps just as important is the comparison between the predictor and the (commonly used)

standard Gauss-Seidel method. With the proper choice of a parameter, the predictor method

can be made stable over as wide a range of step size as the standard method. The major

drawback with this is that there is no way to determine the optimum value of this parameter

at present.

PREMOS is a program that is accurate enough for many applications. However, for

f-iture experimental work it may be helpful to break the program into smaller, interacting

functional blocks. At the present time PREMOS contains over 4500 lines of code. While

this is not nearly as large a program as SPICE, continued growth could certainly slow the

speed of analysis. Breaking the program into smaller functional blcdks would have the

disadvantage that more information would have to be stored for the blocks to be able to
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wmmunicate, but would allow the user to change one pant of his input data without having to

r necessatrily execute the whole program again. Further experimental work would also be
simplified if part of the program could be more easily modified without affecting unrelated

areas of analysis.
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cmos RS flip-flop
model nand cmnan(2 I 15f 1Of SOf)
model clk sourc(5 0 10n 5n 10n 5n)

ndl 1 3 8 4 nand
nd2 2 3 9 5 nand
nd3 4 7 10 6 nand
nd4 5 6 11 7 nand

ss 10 cik 1 1 0 0 1 1 0 0 0 0 1
rr 2 0 clk 0 0 1 1 1 1 0 0 1 0 1
en 3 0 *clk 1 .1 1 1 1 1 0 1 0 1

opt 0 3 3 3 3
dc
contl 1 1 1
time 120n In
send 1 2 6 7
V+ 5
end

Figure A.2 Input Data File for
Gated R-S Flip-Flop.
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cmos master-slave RS flip-flop
model inv cminv(2 2 10f 2Of)
model nand cmnan(2 1 15f 10f 5Of)
modei clk sourc(5 0 10n 5n 10n 5n)

x1 3 8 inv
ndl 1 3 13 4 nand
nd2 2 3 14 5 nand
nd3 4 7 15 6 nand
nd4 5 6 16 7 nand
nd5 6 8 17 9 nand
nd6 7 8 18 10 nand
nd7 9 12 19 11 nand
nd8 10 11 20 12 nand

ss 2 0 cik 0 02. 1 0 0 0 0 1 0 1 0
rr 2 0 clk 0 0 0 0 1 1 0 0 0 0 1 0 1
ck 3 0 clk . 0 1 0 1 0 1 0 1 0 1 0 1

opt 0 3 3 3 3
dc
contl 1 1 1

OL time 120n in
send 1 2 3 11 12v+ 5

end

Figure A.5 Input Data File for Master-Slave
R-S Flip-Flop.
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cmos binary-to-octal decoder
model inv cminv(2 2 1Of 20f)
model nand cmnan(2 I 15f 10f 5Of)
model nor cmnor(l 2 15f 1Of 20f)
model elk sourc(5 0 iOn 5n 1On 5n)

xi 1 5 inv
x2 2 6 inv
x3 3 7 inv

nrl 5 6 22 8 nor
nr2 5 2 23 9 nor
nr3 6 1 24 10 nor
nr4 2 1 25 11 nor
nr5 3 4 26 12 nor.
nr6 7 4 27 13 nor

ndl 12 11 28 14 nand
nd2 9 12 29 15 nand
nd3 12 10 30 16 nand
nd4 8 12 31 17 nand
ndS 11 13 32 18 nand
nd6 9 13 33 19 nand
nd7 10 13 34 20 nand
nd8 8 13 35 21 nand

ckl i 0 clk 0 1 C 1 0 1 0 1 0 1 0 1
ck2 2 0 clk 0 0 1 1 0 0 1 1 0 0 1 1
ck3 3 0 clk 00001100
ck4 4 0 clk 0 0 0 0 0 0 1 1 1 1 C 0

opt 0 3 3 3 3 -'
dc
cont! 1 1 1
time 60n In
send 14 15 16
v* 5
end

Figure A.8 Input Data File for
Bina.y-to-Octal Decoder.
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